Optimising Existing Software with Genetic Programming
نویسندگان
چکیده
We show genetic improvement of programs (GIP) can scale by evolving increased performance in a widely-used and highly complex 50 000 line system. GISMOE found code that is 70 times faster (on average) and yet is at least as good functionally. Indeed it even gives a small semantic gain.
منابع مشابه
Multi-objective Improvement of Software Using Co-evolution and Smart Seeding
Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist....
متن کاملA New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
متن کاملThe GISMOE challenge: Constructing the Pareto Program Surface Using Genetic Programming to Find Better Programs∗
Optimising programs for non-functional properties such as speed, size, throughput, power consumption and bandwidth can be demanding; pity the poor programmer who is asked to cater for them all at once! We set out an alternate vision for a new kind of software development environment inspired by recent results from Search Based Software Engineering (SBSE). Given an input program that satisfies t...
متن کاملFADAlib: an open source C++ library for fuzzy array dataflow analysis
Ubiquitous multicore architectures require that many levels of parallelism have to be found in codes. Dependence analysis is the main approach in compilers for the detection of parallelism. It enables vectorisation and automatic parallelisation, among many other optimising transformations, and is therefore of crucial importance for optimising compilers. This paper presents new open source softw...
متن کاملNetwork Planning Using Iterative Improvement Methods and Heuristic Techniques
The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...
متن کامل